Marwari college Darbhanga

Subject---physics

Class--- I.Sc.first year

Topic--- work, Energy and Power (collision)

By:- Dr. Sony Kumari,

Assistant professor

Marwari college Darbhanga.

Collision

One Dimensional or Head-on Collision

If the initial and final velocities of colliding bodies lie along the same line, then the collision is called one dimensional or head-on collision.

Inelastic One Dimensional Collision

Applying Newton's experimental law, we have

Velocities after collision

 $v_1 = (m_1 - m_2) u_1 + 2m_2 u_2 / (m_1 + m_2)$ and $v_2 = (m_2 - m_1) u_2 + 2m_1 u_1 / (m_1 + m_2)$ When masses of two colliding bodies are equal, then after the collision, the bodies exchange their velocities.

 $\mathbf{v}_1 = \mathbf{u}_2$ and $\mathbf{v}_2 = \mathbf{u}_1$

If second body of same mass ($m_1 = m_2$) is at rest, then after collision first body comes to rest and second body starts moving with the

initial velocity of first body.

 $v_1 = 0$ and $v_2 = u_1$

If a light body of mass $m_{\scriptscriptstyle 1}$ collides with a very heavy body of mass $m_{\scriptscriptstyle 2}$ at rest, then after collision.

 $v_1 = -u_1$ and $v_2 = 0$

It means light body will rebound with its own velocity and heavy body will continue to be at rest.

If a very heavy body of mass m_1 collides with a light body of mass $m_2(m_1 > > m_{21})$ at rest, then after collision

$$v_1 = u_1$$
 and $v_2 = 2u_1$

In Inelastic One Dimensional Collision

Loss of kinetic energy

 $\Delta E = m_1 m_2 / 2(m_1 + m_2) (u_1 - u_2)^2 (1 - e^2)$ **In Perfectly Inelastic One Dimensional Collision** Velocity of separation after collision = 0.

Loss of kinetic energy = $m_1m_2 (u_1 - u_2)^2 / 2(m_1 + m_2)$ If a body is dropped from a height h_0 and it strikes the ground with velocity v_0 and after inelastic collision it rebounds with velocity v_1 and rises to a height h_1 , then

$$e = \frac{v_1}{v_0} = \sqrt{\frac{2gh_1}{2gh_0}} = \sqrt{\frac{h_1}{h_0}}$$

If after n collisions with the ground, the body rebounds with a velocity $v_{\scriptscriptstyle n}$ and rises to a height $h_{\scriptscriptstyle n}$ then

 $e^{n} = v_{n} / v_{o} = \sqrt{h^{n} / h^{o}}$

Two Dimensional or Oblique Collision

If the initial and final velocities of colliding bodies do not lie along the same line, then the collision is called two dimensional or oblique Collision.

In horizontal direction,

 $m_1u_1\cos\alpha_1 + m_2u_2\cos\alpha_2 = m_1v_1\cos\beta_1 + m_2v_2\cos\beta_2$

In vertical direction.

 $m_1u_1 \sin \alpha_1 - m_2u_2 \sin \alpha_2 = m_1u_1 \sin \beta_1 - m_2u_2 \sin \beta_2$ If $m_1 = m_2$ and $\alpha_1 + \alpha_2 = 90^{\circ}$ then $\beta_1 + \beta_2 = 90^{\circ}$

If a particle A of mass $m_{\scriptscriptstyle 1}$ moving along z-axis with a speed u makes an elastic collision with another stationary body B of mass $m_{\scriptscriptstyle 2}$

From conservation law of momentum

 $m_1 u = m_1 v_1 \cos \alpha + m_2 v_2 \cos \beta$ $0 = m_1 v_1 \sin \alpha - m_2 v_2 \sin \beta$